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Abstract
An exact cubic open string field theory rolling tachyon solution was recently
found by Kiermaier et al and Schnabl. This oscillatory solution has been argued
to be related by a field redefinition to the simple exponential rolling tachyon
deformation of boundary conformal theory. In the latter approach, the disk
partition function takes a simple form. Out of curiosity, we compute the disk
partition function for an oscillatory tachyon profile, and find that the result is
nevertheless almost the same.

PACS numbers: 11.25.−w, 11.25.Uv, 11.25.Db, 11.25.Sq

1. Introduction

Recently there has been remarkable new analytic progress in the study of cubic open string
field theory (OSFT) [1]. In particular, an exact rolling tachyon solution was found [2], related
to the tachyon matter and decay of an unstable D-brane. The profile of the tachyon component
of the full string field obtained by [2] from Witten’s cubic OSFT is

Tλ(x
0) = λ e

1√
α′ x

0

+
∞∑

n=2

(−1)n+1λnβn e
1√
α′ nx0

, (1)

where βn are positive coefficients3 with a known integral representation. The authors of [2]
started from the exactly marginal operator

V = e
1√
α′ X

0

, (2)

constructed the full OSFT solution recursively, adopting the gauge choice of [3], and obtained
(1). Generalizations to superstrings have been reported in [4], and related work in [5].

3 We follow the convention where the true minimum of the tachyon effective potential is at some T > 0 while
keeping λ > 0. We work in units where α′ = 1.
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The solution (1) has an oscillatory structure, as was suggested to be characteristic for
the OSFT rolling tachyon by the previous investigations [6, 7]. On the other hand, in the
boundary conformal field theory (BCFT) description of the same process4, the tachyon field
rolls monotonously, represented by the simple exponential (2). The apparent contradiction
was addressed in [6]. The OSFT string field solution contains an infinite tower of other
(massive) fields which are sourced by the rolling tachyon component. One can perform a
field redefinition to boundary string field theory (BSFT) [9]5 variables, in such a way that all
other fields except the tachyon are zero [11]. In the BSFT field coordinatization the tachyon
can then turn out to be the simple exponential (2), while it was oscillatory in the OSFT frame
[6]. Thus the marginal OSFT solution (where the tachyon component is off-shell) maps to
a manifestly on-shell form. Further, it maps to the exactly marginal operator which gives a
BCFT deformation. For the new full OSFT solution of [2] this was shown in [12]. Since the
new rolling tachyon solution relates to the known BCFT deformation, in particular the time
evolution of pressure of the associated tachyon matter has already been calculated in [13], it
corresponds to the disk partition function of the BCFT with λV (2),

p(x0) = Zdisk(x
0) = 1

1 + 2πλ ex0 . (3)

In this paper, we are reporting a curious observation. Suppose we were to consider BSFT
with an oscillatory off-shell tachyon profile of the form (1). Consider the worldsheet CFT and
turn on the boundary the tachyon field (1),

S = S0 +
∮

∂�

dt Tλ(X
0(t)), (4)

it is off-shell and breaks the conformal invariance on the boundary. Suppose we attempt
to do a straightforward calculation of the disk partition function, leaving the zero mode x0

unintegrated. Given the oscillatory behavior of (1), we would probably expect the resulting
disk partition function to be quite unwieldy and very different from (3).

However, when we perform string worldsheet theory analysis (along the lines of [13]),
surprisingly we find that the result is almost the same as (3), with maximum 1% relative
deviation. The deviation only appears at times close to the value x0 ∼ −ln 2πλ. Apart from
the deviation, there is no oscillatory behavior—at late times the disk partition functions become
identical. We do not quite know how to interpret this curious observation. Apparently the field
redefinitions involved in mapping from the oscillatory tachyon profile to the monotonously
rolling one are not always so significant from the point of view of interesting observables.
Further, while in our calculation the tachyon is of the form (1), the actual values of the
coefficients βn do not matter much—in particular, they (and the tachyon field) need not be the
same as in [2]. Interpretational issues aside, we believe that the calculational tricks which we
have used will be useful for other investigations and thus interesting in their own right.

2. The disk partition function

In the first quantized string worldsheet approach, we turn on the tachyon background (4).
The disk partition function is (separating out the zero mode X0 = x0 + X′0 and leaving it
unintegrated)

Zdisk(x
0) =

∫
DX′0 D �X e−S0 exp

(
−

∮
∂�

dt Tλ(x
0 + X′0(t))

)
. (5)

4 For another reference on the relation between SFT solutions and deformations of BCFT, see [8].
5 A pedagogical discussion of BSFT is also [10].
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Note that, in the limit βn>1 → 0, we expect to produce the familiar results for half S-brane
[13].

By expanding in the boundary perturbation in (5) as a power series, and carefully following
the calculational steps outlined in [14], the disk partition function is

Zdisk(x
0) =

∞∏
n=1

∞∑
Nn=0

(
(−1)nλnβn enx0)Nn

Nn!

∫
dt

(n)
1 · · · dt

(n)
Nn

〈∏
n,i

enX′0(t (n)
i )

〉

=
∞∑

{N1,N2,...}=0

( ∞∏
n=1

((−1)nzn)
Nn

Nn!

)
· I (N1, N2, . . .), (6)

with

zn ≡ 2πλnβn enx0
> 0 (7)

and β1 = 1, and where

I (N1, N2, . . .) ≡
∫ [ ∞∏

n=1

Nn∏
i=1

dt
(n)
i

2π

] ⎡
⎣ ∞∏

n=1

∏
1�i<j�Nn

∣∣eit
(n)
i − eit

(n)
j

∣∣2n2

⎤
⎦

·
⎡
⎣ ∞∏

1�n<m

Nn∏
i=1

Nm∏
j=1

∣∣eit
(n)
i − eit

(m)
j

∣∣2nm

⎤
⎦ (8)

denotes an infinite product of coupled integrals.
The above formulae are just formal expressions before good domains of convergence are

found. It is difficult to analyze the problem fully, so we will first study a simpler toy model.

3. A warm-up calculation: the Dyson series

We have two tasks at hand: (i) to try to calculate the integrals (8) and (ii) to try to control the
series (6). These tasks appear to be rather challenging, so we will first consider a toy model
calculation. It is reminiscent of the actual one but allows us to carry out both tasks.

We consider a series expansion, which we will call the ‘Dyson series’ from now on. It
is inspired by the integration formula to compute the canonical partition function of a Dyson
gas [15],

∫ N∏
i=1

dti

2π

⎡
⎣∏

i<j

|eiti − eitj |β
⎤
⎦ = �

(
1 + βN

2

)
[
�

(
1 + β

2

)]N
, (9)

for which various proofs have been presented in the literature (see [16]). The integral (8)
resembles an infinite product of decoupled Dyson gas integrals (9), except for the last cross
coupling term in the square brackets in the integrand of (8). Let us first truncate the infinite
product and keep just nmax first terms, with integer nmax � 1. (In the end we will consider
the limit nmax → ∞.) Then, consider the cross coupling term in the integrand of (8), which
renders the integral difficult to evaluate. Let us rewrite it as

nmax∏
1�n<m

Nn∏
i=1

Nm∏
j=1

∣∣eit
(n)
i − eit

(m)
j

∣∣2nm =
nmax∏

1�n<m

Nn∏
i=1

Nm∏
j=1

(
1 − eit

(m)
j

eit
(n)
i

)nm (
1 − eit

(n)
i

eit
(m)
j

)nm

. (10)

Now it turns out that the integral simplifies drastically if we replace the exponent nm in the
first term on the rhs by n2, and the second exponent nm by m2. This step is clearly ad hoc.
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However, it is a useful trick to try, since it simplifies the calculations enough to give a tractable
toy model calculation to practice with and to gain insight for the actual disk partition function
calculation. So we consider a version of the series (6), where we replace the original integrals
(8) by

Ĩ (N1, N2, N3, . . . ; nmax) =
∫ [

nmax∏
n=1

Nn∏
i=1

dt
(n)
i

2π

] ⎡
⎣nmax∏

n=1

∏
1�i<j�Nn

∣∣eit (n)
i − eit (n)

j

∣∣2n2

⎤
⎦

·
⎡
⎣ nmax∏

1�n<m

Nn∏
i=1

Nm∏
j=1

(
1 − eit (m)

j

eit (n)
i

)n2 (
1 − eit (n)

i

eit (m)
j

)m2⎤
⎦

= �
(
1 +

∑nmax
n=1 n2Nn

)
∏nmax

n=1[�(1 + n2)]Nn
, (11)

where the last line is the exact analytical result for the integral [16, 17]. Since the integrals
(11) are a variation of the Dyson gas integral formula (9), we call the new series ‘Dyson
series’. In appendix A we compare the original integrals I with the approximate ones Ĩ , for
some cases where it is possible to calculate the original integral analytically, to see how much
Dyson series toy model deviates from (11) the exact formula.

The virtue of the Dyson series is that we can also solve the task (ii): we can actually
sum the series in a controlled way. We will first recognize it as an asymptotic series, but can
rewrite it as an integral formula which we can regulate by a suitable deformation of integration
contour. We will discuss that next.

4. Summing the Dyson series

Instead of the series (6) we consider the Dyson series with coefficients Ĩ instead of I. We also
simplified it further by truncating the infinite product, so that we have

ZDyson(x
0; nmax) =

⎛
⎝nmax∏

n=1

∞∑
Nn=0

((−1)nzn)
Nn

Nn!

⎞
⎠ �

(
1 +

∑nmax
n=1 n2Nn

)
∏nmax

n=1[�(1 + n2)]Nn
. (12)

Even after truncating to a finite product of nmax terms, the expression is not well behaved since
the product is that of possibly divergent infinite series. In order to gain better control, we
rewrite (12) as an integral representation,

ZDyson(x
0; nmax) =

⎛
⎝nmax∏

n=1

∞∑
Nn=0

((−1)nzn)
Nn

Nn!(n2)!Nn

⎞
⎠ ∫ ∞

0
du u

∑nmax
n=1 n2Nn e−u

=
∫ ∞

0
du exp

[
−u +

nmax∑
n=1

(−1)nznu
n2

(n2)!

]
. (13)

Now we have a single integral, and the exponent in the integrand is a finite sum of nmax terms.
Let us take a closer look at it. We denote

Fnmax(u) = −u +
nmax∑
n=1

(−1)nznu
n2

(n2)!
. (14)

For real u, Fnmax(u) is oscillatory with the amplitude of oscillation increasing with u. The
largest oscillations are due to the terms with n 	 nmax. As a consequence, integral (13) does
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Figure 1. Re F11(r
2 eiφ) for r = 0, . . . , 12.5 (horizontal axis) and for φ = 0, . . . , π/2 (vertical

axis) with x0 = 0. Re F11 is small in the dark regions.

not have expansion (12) for small zn, and the limit nmax → ∞ does not exist. We will next
give a prescription to regulate the integral.

Let us deform the contour of integration in (13) away from the positive real axis. If the
integrand would be analytic, this would have no effect. However, it has an essential singularity
at infinity. Consequently, the contour deformation will change the integral, due to a different
approach to the point at infinity. Thus we can regulate the integral (13) by finding a suitable
contour deformation. However, the integral will then also become complex valued. Since the
pressure is real valued, we adopt a prescription where we define it to be the real part of the
integral over the deformed contour6,

ZDyson(x
0; nmax) = Re

∫
C

du exp
[
Fnmax(u)

]
, (15)

where C runs from 0 to ∞ such that ReFnmax decreases monotonically on it. For the choice
of C, see figure 1 which depicts the eye-appealing structure of the real part of Fnmax (the plot
is shown for the value nmax = 11). The regular structure of ReFnmax arises from the fact that
ReFnmax(u) is dominated by the nth term of the sum at |u| 	 n2. Figure 1 suggests that there
is a preferred choice for a path (in the quadrant 0 < φ < π/2) from 0 to ∞ that avoids all
the light gray regions and proceeds in the direction of darker color (decreasing ReFnmax ). We
call such a path Cpref and focus on (15) with C = Cpref which stays well defined in the limit
nmax → ∞.

6 With this prescription, it reproduces the asymptotic series (12). If one has a strong preference to keep the integral
real valued, one can alternatively first write it as a sum of two identical terms, then deform the contour in two opposite
ways as mirror images of each other so that the two terms become complex conjugates.
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As an example, let us consider the leading correction with nmax = 2. We take Cpref with a
constant phase, i.e., u = r eiπ/4 with r = 0, . . . ,∞. Then

ZDyson(x
0; nmax = 2) = Re

∫ ∞

0
dr exp[iπ/4 − (1 + z1)r eiπ/4 − z2r

4/24], (16)

which is well defined. (Recall that zn = zn(x
0) ∼ exp(nx0).) Developing the integrand at

z2 = 0, we get back the (asymptotic) series

ZDyson(x
0; 2) = 1

1 + z1
+

z2

(1 + z1)5
+

35z2
2

(1 + z1)9
+ · · · . (17)

We want to compare this to the leading term

ZDyson(x
0; 1) ≡ 1

1 + z1
= 1

1 + 2πλ ex0 . (18)

Numerical integration of (16) verifies that the total correction with nmax = 2 is small,[
ZDyson(x

0; 2) − ZDyson(x
0; 1)

ZDyson(x0; 1)

]
max,x0∈R

∼ 10−3, (19)

and well described by the first few terms of the asymptotic series. Note then that at late times
the first subleading term is ∼z2z

−5
1 ∼ e−3x0

, which is much smaller than the leading term
∼z−1

1 ∼ e−x0
. One can argue that at late times x0 → ∞ all subleading terms are negligible

compared to the leading e−x0
behavior. Similarly, one finds that the nmax = 3 correction is

even smaller [
ZDyson(x

0; 3) − ZDyson(x
0; 2)

ZDyson(x0; 1)

]
max,x0∈R

∼ 10−7. (20)

Refining the approximation to larger values of nmax produces even more negligible corrections.
Thus the total correction to the leading result (18) is at most ∼10−3 in the Dyson series,
even when nmax → ∞. Thus, the approximate result for the disk partition function decays
exponentially at late times,

ZDyson(x
0) = lim

nmax→∞ ZDyson(x
0, nmax) ∼ e−x0; x0 → ∞. (21)

We will now return back to our original problem, the disk partition function (6). The
lesson from the Dyson series toy model is that it is useful to truncate the infinite products by
introducing a ‘cut-off’ nmax and then try to see how much the time dependence is corrected
as nmax is increased. If the additional corrections are more and more subleading, they can
be ignored in the limit nmax → ∞. The full series is, in fact, well approximated by just the
leading terms as x0 → ∞. The partition function (6) turns out to have a similar behavior.

5. The original disk partition function at late times

Consider again the exact series (6). In our toy model the relevant late-time corrections are
produced by the first terms in the asymptotic series (12). It turns out that the first terms of the
exact series (6) can also be calculated analytically, without using any approximation for I. The
first correction terms are those, where most of the N2, N3, . . . are zero. We denote the integral
coefficients of these by

In(N1, Nn) ≡ I (N1, 0, 0, . . . , 0, Nn, 0, 0, . . .) (22)

6
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so, e.g., I2(N, 4) = I (N1 = N,N2 = 4, 0, 0, . . .). It turns out we can evaluate the integrals

In(N, 1) =
∫

dt
(n)
1

2π

N∏
i=1

dt
(1)
i

2π

∏
i<j

∣∣eit
(1)
i − eit

(1)
j

∣∣2 ∏
i

∣∣eit
(1)
i − eit

(n)
1

∣∣2n
. (23)

This is a well-known Selberg integral, and has previously been applied in the context of rolling
tachyons in [14]. The result reads

In(N, 1) = N !
N∏

j=1

�(j)�(j + 2n)

�(j + n)2
= N !

n−1∏
j=0

j !

(n + j)!

(N + n + j)!

(N + j)!
. (24)

In particular, we find

I2(N, 1)

N !
= N + 2

12

(N + 3)!

N !
=

(
N + 4

4

)
+

(
N + 3

4

)

= 1

4!

[
(N + 4)!

N !
+

(N + 3)!

(N − 1)!

]
,

I3(N, 1)

N !
= 1

9!

[
(N + 9)!

N !
+ 10

(N + 8)!

(N − 1)!
+ 20

(N + 7)!

(N − 2)!
+ 10

(N + 6)!

(N − 3)!
+

(N + 5)!

(N − 4)!

]
, (25)

where the first terms of the sums are the same as in the Dyson series toy model.
Thus, we find the corrections to Zdisk (equation (6)) that are linear in z2,3:

Zdisk(x
0) =

∞∑
N=0

(−1)NzN
1

[
1 + z2

I2(N, 1)

N !
− z3

I3(N, 1)

N !
+ · · ·

]

= 1

1 + z1
+

z2(1 − z1)

(1 + z1)5
− z3

(
1 − 10z1 + 20z2

1 − 10z3
1 + z4

1

)
(1 + z1)10

+ · · · . (26)

From (24) it follows that all higher order linear corrections (those depending on zn with n � 4)
have similar structures.

Note that the size of the corrections is slightly larger as in the Dyson series. In the latter,
at late times the correction linear in z2 was ∼z2z

−5
1 ∼ e−3x0

, but now we find ∼z2z
−4 ∼ e−2x0

.
The correction linear in z3 is subleading, we find at late times ∼z3z

−6
1 ∼ e−3x0

.
Moving to higher order, the coefficients I2(N, 2) apparently also have a formula similar

to (25). We find

I2(N, 2)

2!N !
= 1

8!

[
35

(N + 8)!

N !
+ 77

(N + 7)!

(N − 1)!
+ 27

(N + 6)!

(N − 2)!
+

(N + 5)!

(N − 3)!

]
, (27)

whence the correction to the disk partition function that is quadratic in z2 becomes

z2
2

(
35 − 77z1 + 27z2

1 − z3
1

)
(1 + z1)9

. (28)

Interestingly, at late times this is of the same order as the linear correction, namely ∼z2
2z

−6
1 ∼

e−2x0
. As we will discuss below, at the order zn

2 we will similarly find ∼zn
2z

−2n−2
1 ∼ e−2x0

,
and generalizing to order zn

3 we will find ∼zn
3z

−3n−3
1 ∼ e−3x0

. All these are small corrections
compared to the leading ∼e−x0

decay.
The above are still a tiny subset of all possible terms in the series (6), containing all

possible combinations of monomials of z1, z2, z3, . . . . But we can estimate their late-time
behavior too.

7
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Equations (25), (27) show that the integers In(N, 1) and I2(N, 2) can be expressed as
finite sums over binomial coefficients. Using methods outlined in appendix B, we evaluated

Î (N1, N2, . . .) = 1∏
n Nn!

I (N1, N2, . . .) (29)

for almost all fixed values of Nn for which Î � 1019. Using these results we then discovered a
generalizaton of formulae (25), (27) for more complicated sets of N2, N3, . . . . We find that for
any N1 = N with fixed N2, N3, . . . , Nnmax (with Nnmax > 0 and 0 = Nnmax+1 = Nnmax+2 = · · ·),
the Î can be written as a finite sum

Î
(
N1 = N,N2, N3, . . . , Nnmax

) = 1

S!

	max∑
	=0

C	

(N + S − 	)!

(N − 	)!

=
	max∑
	=0

C	

(
N + S − 	

S

)
(30)

where S = ∑nmax
n=2 n2Nn. The relevant fact for the moment is that the coefficients C	 turn out

to be independent7 of N. We will give an explicit formula for 	max below. The corresponding
correction term to Zdisk then becomes

δZdisk =
nmax∏
n=2

[(−1)nzn]Nn

∞∑
N=0

(−z1)
N Î

(
N,N2, N3, . . . , Nnmax

)

=
nmax∏
n=2

[(−1)nzn]Nn

	max∑
	=0

C	

∞∑
N=0

(
N + S − 	

S

)
(−z1)

N

=
nmax∏
n=2

[(−1)nzn]Nn

	max∑
	=0

C	

(−z1)
	

(1 + z1)S+1
. (31)

Importantly, for 	max we found8 an explicit formula

	max =
nmax∑
n=2

[n(n − 1)Nn] − nmax + 1. (32)

The combination of (32) and the schematic formula (31) allows us to estimate the leading
late-time dependence of all the correction terms to Zdisk(x

0). At late times the leading part
of the generic monomial correction (31) is given by the term with the highest exponent of z1,
i.e., the 	 = 	max term. Then, combining the late-time dependences

nmax∏
n=2

zNn

n ∼ exp

[(
nmax∑
n=2

nNn

)
x0

]

z
	max
1 ∼ exp

[(
nmax∑
n=2

n(n − 1)Nn

)
x0 − (nmax − 1)x0

]

z
−(S+1)
1 ∼ exp

[
−

(
nmax∑
n=2

n2Nn

)
− x0

]
,

(33)

7 Formula (30) has been evaluated and verified explicitly (with explicit coefficients C	), e.g., for (N2, N3, N4) =
(1, 1, 0), (2, 1, 0), (0, 2, 0) and (1, 0, 1) in addition to the cases discussed above.
8 Using (24) it is straightforward to determine 	max for the corrections which are linear in zn (with arbitrary n = nmax).
The general formula (32) was found by first making an educated guess and then testing it with computer calculations.
So far we have explicitly verified it up to nmax = 4, but have not yet been able to construct a general proof.
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0.4

0.6

0.8

Z

Figure 2. The disk partition function (35) as a function of time t. Here λ = 1 and we used a large
value ∼15 for β2. For reference, the dashed line represents (3).

we find that the correction term (31) behaves as

δZdisk ∼ e−nmaxx
0

(34)

at late times x0 → +∞ and is thus subleading. Thus the leading correction is at most of the
order e−2x0

.

6. Summary

We have calculated the disk partition function with an oscillatory tachyon field profile (1)
instead of the exactly marginal deformation (2). The largest deviations which we have found
from the disk partition function (3) of the latter are surprisingly small, given by (26) and (28).
Including the largest one (linear in z2) the disk partition function reads

Zdisk(x
0) 	 1

1 + 2πλ ex0 +
z2(1 − z1)

(1 + z1)5

= 1

1 + ex̃0 +
β2

2π

(
e2x̃0 − e3x̃0)
(
1 + ex̃0

)5
, (35)

where x̃0 = x0 + ln 2πλ. Figure 2 shows the disk partition function with λ = 1 and with a
large value of β2 	 15 for better visualization. All the deviations seem to contribute around
x0 = −ln 2πλ and become smaller in size. We find the result surprising: the disk partition
function is very similar to (3) although the tachyon profile (1) is oscillatory and very different
from the monotonously rolling (2). In particular, the oscillatory behavior is almost washed
out.
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Appendix A. A simple method for evaluating I

Let us study an integral of the form

Jm =
∫ m∏

i=1

dti

2π

∏
1�i<j�m

∣∣eiti − eitj
∣∣2kij

, (A.1)

where kij are integers. This form is a generalization of (8), where the exponents n2 and nm are
allowed to take any values. The integral may be expressed as a finite sum by doing a Fourier
transform. The ‘propagator’ from ti to tj reads

S(tj − ti) = ∣∣1 − ei(tj −ti )
∣∣2kij =

kij∑
nij =−kij

(−1)nij

(
2kij

kij + nij

)
einij (tj −ti ). (A.2)

By inserting this to (A.1) and by doing the t integrals we have

Jm =
⎡
⎣ m∏

i<j

kij∑
nij =−kij

(−1)nij

(
2kij

kij + nij

)⎤
⎦ m∏

i=1

δ

⎛
⎝ i−1∑

j=1

nji =
m∑

j=i+1

nji

⎞
⎠ , (A.3)

where only m − 1 of the conditions in the (Kronecker) delta functions are independent. They
can be used to fix the values of n12, n13, . . . so that

Jm =
⎡
⎣ ∏

1<i<j�m

kij∑
nij =−kij

(−1)nij

(
2kij

kij + nij

)⎤
⎦ m∏

j=2

(
2k1j

k1j − ∑j−1
i=2 nij +

∑m
i=j+1 nji

)
. (A.4)

This formula can be used to evaluate I for small n and Nn. E.g., I2(2, 2) is found by letting
m = 4, k12 = 1, k13 = k14 = k23 = k24 = 2, k34 = 4. Some values are tabulated in table A1.
Note that

Ĩ 2(N1, N2) = (N1 + 4N2)!

4!N2
� I (N1, N2). (A.5)

In appendix B we present a more efficient method of evaluating I.

Appendix B. A formula for I using matrix determinants

In this appendix the integral

I (N1, N2, N3 . . .) =
∫ [ ∞∏

n=1

Nn∏
i=1

dt
(n)
i

2π

] ⎡
⎣ ∞∏

n=1

∏
1�i<j�Nn

∣∣eit (n)
i − eit (n)

j

∣∣2n2

⎤
⎦

·
⎡
⎣ ∞∏

1�n<m

Nn∏
i=1

Nm∏
j=1

∣∣eit (n)
i − eit (m)

j

∣∣2nm

⎤
⎦ (B.1)

is transformed to a finite sum over certain integer valued functions. This sum can then be used
to evaluate I exactly for a given set of {Nn}.
10



J. Phys. A: Math. Theor. 41 (2008) 015402 N Jokela et al

Table A1. Comparison of I2 and Ĩ 2.

N1 N2 I2(N1, N2) Ĩ 2(N1, N2) point of interest

0 0 1 1
k 0 k! k!

0 k (4k)!
4!k

(4k)!
4!k

1 1 4!
2!2 = 6 5

2 1 5!
3 = 5!3!

2! = 40 30

3 1 53 · 3 · 22 = 5·5!
2 = 5·6!

3·22 = 300 210

4 1 2332 · 5 · 7 = 7! = 2520 1680

1 2 7224 = 7!22!4

5!23!2 = 784 630 I (1, 2) = [ (9
4

)
+ 14

3

]
I (1, 1)

2 2 5 · 33 · 17 · 22 = 9180 6300

3 2 24 · 3 · 2371 = 113 808 69 300

1 3 3 · 2572112 = 569 184 450 450 I (1, 3) = [ (13
4

)
+ 11

]
I (1, 2)

2 3 26337 · 13 · 61 = 9592 128 6306 300

1 4 210325272112 = 1366 041 600 1072 071 000 I (1, 4) = [ (17
4

)
+ 225

]
I (1, 3)

For n = 1 (i.e., 0 = N2 = N3 = · · ·), (B.1) becomes

IN =
∫ ∏

i

dti

2π

∏
1�i<j�N

∣∣eiti − eitj
∣∣2

. (B.2)

Here the integrand is the absolute value squared of the Vandermonde determinant

|�(z1, . . . , zN)|2 =
∏

1�i<j�N

∣∣eiti − eitj
∣∣2 =

∣∣∣∣∣
∑
{i}

εi1···iN z
i1−1
1 · · · ziN−1

N

∣∣∣∣∣
2

=
∣∣∣∣∣
∑



(−1)

N∏

k=1

z

(k)−1
k

∣∣∣∣∣
2

(B.3)

where zk = exp(itk) and 
 denotes permutations of 1, 2, . . . , N . It is easy to check that if
(B.3) is expressed as a polynomial of {zk}, the constant term in the polynomial is equal to IN .

The Vandermonde approach can be generalized for n > 1 using confluent Vandermonde
matrices. This can be done by differentiation. For example,

∏
1�i<j�N

|zi − zj |2ninj =
∣∣∣∣ ∂

∂zN+1
�(z1, . . . , zN , zN+1)

∣∣
zN+1=zN

∣∣∣∣
2

=
∣∣∣∣∣
∑
{i}

εi1···iN+1z
i1−1
1 · · · ziN−1

N (iN+1 − 1)z
iN+1−2
N

∣∣∣∣∣
2

, (B.4)

where nIN
= 2 and all other ni = 1. This is the determinant of a confluent Vandermonde

matrix.
Generalizing to higher n and Nn (with M = ∑

n nNn < ∞) the integrand in the definition
of I becomes ∏

pairs

∣∣z(n)
i − z

(m)
j

∣∣2nm = |det A|2, (B.5)
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where A is the M × M confluent Vandermonde matrix

Aij = 1

(s − 1)!

(
∂

∂z
(n)
k

)s−1 (
z
(n)
k

)j−1
. (B.6)

The relation between n, k, s and i is (uniquely) determined by 1 � n, 1 � k � Nn, 1 � s � n

and 	(n, k) + s = i with 	(n, k) = ∑n−1
m=1 mNm + (k − 1)n. The result evaluates to

∏
pairs

∣∣z(n)
i − z

(m)
j

∣∣2nm =
∣∣∣∣∣∣
∑
{i}

εi1···iM
∏
n

Nn∏
k=1

⎡
⎣ n∏

s=1

1

(s − 1)!

(
∂

∂z
(n)
k

)s−1 (
z
(n)
k

)i	(n,k)+s−1

⎤
⎦

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣
∑
{i}

εi1···iM
∏
n

Nn∏
k=1

[
n∏

s=1

(i	(n,k)+s − 1) · · · (i	(n,k)+s − s + 1)

(s − 1)!

(
z
(n)
k

)i	(n,k)+s−s

]∣∣∣∣∣∣
2

=
∣∣∣∣∣∣
∑
{i}

εi1···iM
∏
n

Nn∏
k=1

1

n!(n − 1)! · · · 1!
�(i	(n,k)+1, . . . , i	(n,k)+n)

(
z
(n)
k

)∑n
s=1 i	(n,k)+s

∣∣∣∣∣∣
2

(B.7)

where z
(n)
k = exp

(
it (n)

k

)
,
∣∣z(n)

k

∣∣2 = 1 was used in the last step, and the Vandermonde matrices
in the last form are obtained after antisymmetrization. Note that the complicated expression
	(n, k) is only needed for the pick up the permutation variable i with the correct index.

The constant term is

I (N1, N2, . . .) =
∑

{i},{j}
εi1···iM εj1···jM

∏
n

Nn∏
k=1

1

[n!(n − 1)! · · · 1!]2

×�(i	(n,k)+1, . . . , i	(n,k)+n)�(j	(n,k)+1, . . . , j	(n,k)+n)

× δ(i	(n,k)+1 + · · · + i	(n,k)+n, j	(n,k)+1 + · · · + j	(n,k)+n) (B.8)

where δ(i, j) = δij is the Kronecker δ-symbol. For n = 1 the δ restrictions give simply
ik = jk . Using these the result ‘simplifies’ to

I (N1, N2, . . .)

N1!
=

∑
S,{i},{j}

εi1···iK εj1···jK

∏
n>1

Nn∏
k=1

1

[n!(n − 1)! · · · 1!]2

×�(S(i	′(n,k)+1), . . . , S(i	′(n,k)+n))�(S(j	′(n,k)+1), . . . , S(j	′(n,k)+n))

× δ

(
n∑

s=1

S(i	′(n,k)+s),

n∑
s=1

S(j	′(n,k)+s)

)
(B.9)

where K = M − N1, the first sum goes over all increasing injections S : {1, . . . , K} →
{1, . . . ,M} (so that i < j ⇔ S(i) < S(j)), and 	′(n, k) = 	(n, k) − N1.

Due to symmetry, one can add the restrictions i	′(n,k)+1 < i	′(n,k+1)+1 (for all n > 1
and 1 � k < Nn), and i	′(n,k)+s < i	′(n,k)+s+1, j	′(n,k)+s < j	′(n,k)+s+1 (for all n > 1, k, and
1 � s < n) and multiply by the ratio of numbers of terms whence the result becomes

Î (N1, N2, . . .) = I (N1, N2, . . .)∏
n Nn!

=
∑

S,{i},{j}

′
εi1···iK εj1···jK

∏
n>1

Nn∏
k=1

1

[(n − 1)! · · · 1!]2

× �(S(i	′(n,k)+1), . . . , S(i	′(n,k)+n))�(S(j	′(n,k)+1), . . . , S(j	′(n,k)+n))

12
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× δ

(
n∑

s=1

S(i	′(n,k)+s),

n∑
s=1

S(j	′(n,k)+s)

)
(B.10)

where the prime indicates the presence of the above restrictions. In particular,

Î 2(N1, N2) = Î (N1, N2, 0, 0, . . .)

=
∑

S,{i},{j}

′
εi1···iK εj1···jK

N2∏
k=1

(S(i2k−1) − S(i2k))(S(j2k−1) − S(j2k))

× δ(S(i2k−1) + S(i2k), S(j2k−1) + S(j2k)) (B.11)

where K = 2N2 and 	′(2, k) = 2(k −1) was inserted. We have written computer codes which
evaluate I using formulae (B.10), (B.11) for a given (but arbitrary) set of {Nn}.
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